

Research Report KTC -15-15/KSP1-15-1F

2015 Safety Belt Usage Survey in Kentucky

Our Mission

We provide services to the transportation community through research, technology transfer and education. We create and participate in partnerships to promote safe and effective transportation systems.

© 2015 University of Kentucky, Kentucky Transportation Center Information may not be used, reproduced, or republished without our written consent.

Kentucky Transportation Center

176 Oliver H. Raymond Building Lexington, KY 40506-0281 (859) 257-5028 fax (859) 257-1815

www.ktc.uky.edu

Research Report KTC-15-15/KSP1-15-1F

2015 SAFETY BELT USAGE SURVEY IN KENTUCKY

by

Kenneth R. Agent, P.E. Transportation Research Engineer

Eric R. Green, P.E. Transportation Research Engineer

> Michael A. Fields Research Analyst

Kentucky Transportation Center College of Engineering University of Kentucky Lexington, Kentucky

in cooperation with Kentucky Transportation Cabinet Commonwealth of Kentucky

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Center, the Kentucky Transportation Cabinet, the United States Department of Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names or trade names is for identification purposes and should not be considered an endorsement.

August 2015

TABLE OF CONTENTS

1.0	Introduction and Background1
2.0	Survey Methodology22.1Selection of Counties and Number of Sites in Each County22.2Assign Sites by Highway Type52.3Selection of Data Collection Sites72.4Data Collection Procedure82.5Usage Rate Calculations102.6Nonresponsive Judgment122.7Imputation132.8Standard Error Calculation13
3.0	Survey Results
4.0	Recommendations
App	endix A. Data Collection Sites23
Арр	endix B. Data Collection Form
Арр	endix C. Data Collection Site Map35
App	endix D. Summary of Data (by Site)
App	endix E. Summary of Data (with sample weights)45
Арр	endix F. Mini-Survey Data

Page

1.0 INTRODUCTION AND BACKGROUND

The use of safety belts and child safety seats has been shown to be an effective means of reducing injuries to motor-vehicle occupants involved in traffic crashes. There have been various methods used in efforts to increase safety belt and safety seat usage. Past efforts have included public information campaigns, local and statewide legislation, and enforcement of the legislation.

Most recently, Kentucky changed the statewide legislation requiring the use of safety belts for all vehicle occupants from secondary to primary enforcement. A statewide law providing secondary enforcement was passed in 1994, with the primary enforcement law passed in 2006. The first legislation in this area in Kentucky was a law enacted by the 1982 Kentucky General Assembly. This required the use of a "child restraint system" for children 40 inches or less in height. Prior to the statewide law, local safety belt usage laws were enacted in several jurisdictions in Kentucky. The first such local law, which became effective in July 1990, was enacted by the Lexington-Fayette Urban County Government.

Statewide observational surveys were first conducted in Kentucky in 1982 and have been conducted annually to document safety belt and safety seat usage. Following the enactment of the statewide secondary law, safety belt usage among drivers increased each survey year, from four percent in 1982 to 58 percent in 1994. The rate has steadily climbed since 1994. Examples of the increasing rates are 60 percent in 2000, 66 percent in 2004, 73 percent in 2008, and 86 percent in 2014.

Statewide usage of child safety seats (CSS) or safety belts for children under four years of age increased from about 15 percent in 1982, before enactment of the mandatory child restraint law, to 30 percent for 1984 through 1986. After a financial penalty was added to the law, this percentage increased to almost 50 percent in 1988. There has been a continued increase in usage, with rates of reaching 98 percent in recent years. However, while usage rates are very high, studies have found problems with the proper use of child safety seats.

The survey methodology used to collect data has been revised slightly a few times. For several years, the statewide belt use survey was based on 200 observation sites in 58 counties taken in the weeks immediately after completing the annual "Click It or Ticket" (CIOT) campaigns. Enforcement and publicity activities related to this campaign typically finish around Memorial Day. Mini-surveys (taken at 21 of the 200 statewide sites) were taken prior to the CIOT, in April, and during the enforcement phase of the CIOT. The relatively large number of sites scattered in so many counties made data collection time-consuming. The most recent survey design (prior to the design used first for the 2013 survey) collected data at 160 sites in 18 counties.

The National Highway Traffic Safety Administration (NHTSA) has issued new Uniform Criteria for State Observational Surveys of Seat Belt Use. The final rule was published in Federal Register Volume 76, Number 63. The revised methodology is described in detail in the following section of this report. This methodology was developed in light of the research team's experience of collecting safety belt usage rates over the past 30 years in Kentucky along with the guidelines contained in the final rule. The new methodology was implemented beginning with the 2013 statewide survey.

The objective of the survey summarized in this report was to establish a statewide safety belt usage rate in Kentucky for 2015. This rate can be compared to those determined from previous surveys. The 2015 statewide survey documents the continued increase in usage associated with the change in the law to allow primary enforcement and related education and enforcement.

2.0 SURVEY METHODOLOGY

2.1 SELECTION OF COUNTIES AND NUMBER OF SITES IN EACH COUNTY

- The number of fatalities was summarized for each of Kentucky's 120 counties for the fiveyear period of 2006 through 2010. The source of the data was Kentucky's crash data base (Collision Report Analysis for Safer Highways (CRASH)). The county totals were sorted, and those in the lowest 15th percentile were identified and excluded from consideration. The result was a sample of 75 counties to be considered as potential survey counties.
- The procedure used prior to 2013 involved collecting data in 18 counties at 160 sites. The past data collection has resulted in a standard error of approximately one percent. Based on past experience, the decision was made to sample 20 percent of the 75 counties, which required the identification of 15 counties for data collection.
- The method selected to ensure a geographically representative sample of counties across Kentucky was to randomly select a county in each of the 12 Transportation Cabinet highway districts. The districts have a similar number of counties and provide a good distribution across the state. Three of the districts include the major urban areas in the state. Two counties were selected in each of these three urban districts, which resulted in the selection of a total of 15 counties.
- One county from each rural highway district and two counties from the three urban highway districts were randomly selected. The only exception to the random selection was the automatic selection of Jefferson and Fayette Counties (in two of the urban districts). This was done because these counties (which contain Louisville and Lexington) have much higher vehicle miles traveled than any other county. Any meaningful statewide sample must include these counties because they are largest urban centers in Kentucky.

- The objective was to identify 150 data collection sites in the 15 selected counties. Based on the results from past data collection, this number of sites would easily meet the 2.5 percentage point standard error criterion. Additional data would be collected if the standard error exceeded 2.5 percent.
- Past experience has shown that the number of vehicles observed varies dramatically by site (depending on the average daily traffic [ADT] at the site). At each site, it is expected that the number of surveys would range from 50 to 1,500. Based on previous surveys, there would be no sites with zero observations and the total statewide sample size should be over 50,000. The number of sites selected in each county was based on the vehicle miles traveled (VMT) in each county. Six categories of VMT were determined, with the number of sites in a county varying from six to 22. The number of sites in each county is proportional to that county's VMT. The counties with the most sites are Jefferson (22 sites) and Fayette (16 sites). This because they have a much higher VMT than other counties.
- Table 1 lists the counties selected. The number of fatalities and vehicle miles traveled are given for each county. The six groupings of counties (based on VMT) are shown, and the number of sites in each county noted.

	Fatalities	Percent of					
	(2006-	Statewide	Highway	VMT		VMT	Number
County	2010)	Fatalities	District	(x1,000)	Population	Group	of Sites
Harrison	24	1.97	6	149,652	18,654	1	6
Clay	52	4.27	11	210,588	23,930	1	6
Bourbon	23	1.89	7	217,836	19,828	1	6
Lincoln	49	4.02	8	247,395	25,072	1	6
Perry	49	4.02	10	340,146	29,241	2	8
Greenup	29	2.38	9	348,777	37,388	2	8
Hart	48	3.94	4	423,369	18,561	2	8
Henderson	56	4.60	2	524,601	45,462	3	10
Pike	123	10.10	12	766,020	65,331	3	10
McCracken	70	5.75	1	792,502	65,109	3	10
Bullitt	55	4.52	5	930,991	75,028	3	10
Warren	95	7.80	3	1,347,271	105,862	4	12
Kenton	51	4.19	6	1,460,873	157,629	4	12
Fayette	127	10.43	7	2,855,813	282,114	5	16
Jefferson	367	30.13	5	6,539,839	713,877	6	22

Table 1. Selected Counties

Number of

District Number	<u>County</u>	Number of Sites
1	McCracken	10
2	Henderson	10
3	Warren	12
4	Hart	8
5	Bullitt	10
	Jefferson	22
6	Kenton	12
	Harrison	6
7	Bourbon	6
	Fayette	16
8	Lincoln	6
9	Greenup	8
10	Perry	8
11	Clay	6
12	Pike	10

• The following list sorts selected counties by highway district. The three urban districts have two counties each and the other nine districts have one county each.

• The following map shows the location of the districts and counties across the state.

2.2 ASSIGN SITES BY HIGHWAY TYPE

- After the counties and the total numbers of data collection sites in each county were determined, the next step was to assign the number of sites by highway type (in each county). The following three roadway types (road class stratum) were used:
 - 1. limited access
 - 2. arterials
 - 3. local

The survey sites in each county were partitioned among the three highway types based on the VMT for each highway type in that county. In seven of the 15 counties there were no roads in the "limited access" category. Therefore, since there was no VMT and no chance of selection, no road segments for this category were included for these seven counties.

- The numbers of sites were adjusted so that data were collected on at least one road in each road stratum class as long as the county had a road in each class
- Using the criteria as noted, the following data (Table 2) present the number of sites by county and highway type. Of the 150 sites, there are 43 sites on limited access roadways, 67 sites on arterials and 40 sites on local roads.

The number of sites in each of the three road classes was determined based on the vehicle miles traveled in each road class. The adjusted number was derived based on the distribution using vehicle miles traveled to ensure that the proper number of sites was provided in each county.

Table 2		Number of Sites in e	each County by	Roadway Class			
County	Sites Allocated	County VMT	Road Class Stratum	Road Class VMT	Number of Sites if Allocated by VMT	Adjusted Number of Sites	Adjusted Total
Jefferson	22	6,538,839,240	1	3,424,627,751	11.52	11	22
			2	2,665,785,337	8.97	9	1
			3	448,426,153	1.51	2	1
Favette	16	2,855,812,630	1	1,019,472,164	5.71	6	16
		· · · ·	2	1,265,598,299	7.09	7	1
			3	570,742,166	3.20	3	1
Bourbon	6	217.836.350	1	0	0.00	0	6
	_	,	2	138.269.100	3.81	4	
			3	79.567.250	2.19	2	1
Bullitt	10	930.990.570	1	494,107,859	5.31	5	10
Dumu	10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	234 167 018	2.52	3	10
			3	202,715,693	2.18	2	1
Clay	6	210 587 750	1	0	0.00	0	6
Ciuy	v	210,507,750	2	104 637 470	2.98	3	
			3	105,950,280	3.02	3	1
Greenun	8	348 776 980	1	105,550,200	0.00	0	8
Greenup	0	540,770,980	2	216 940 991	4.98	5	0
			3	131 835 989	3.02	3	
Hanniaan	6	140 652 400	1	151,855,989	0.00	3	6
narrison	U	149,032,490	2	74 270 202	2.08	0	0
			2	74,279,292	2.98	3	4
TT /	0	422 268 750	3	75,373,198	3.02	3	0
Hart	8	423,368,750	1	276,205,327	5.22	5	δ
			2	15,4/4,129	0.29	1	-
	10	524 (01 420	3	131,689,294	2.49	2	10
Henderson	10	524,601,430	1	41,372,008	0.79	1	10
			2	342,108,540	6.52	7	
		4 4 60 0 20 0 20	3	141,120,881	2.69	2	
Kenton	12	1,460,873,030	1	829,034,625	6.81	7	12
			2	351,472,650	2.89	3	-
			3	280,365,755	2.30	2	
Lincoln	6	247,394,860	1	0	0.00	0	6
			2	150,841,056	3.66	4	4
			3	96,553,804	2.34	2	
McCracken	10	792,502,460	1	228,178,782	2.88	3	10
			2	340,918,903	4.30	4	4
			3	223,404,774	2.82	3	
Perry	8	340,145,980	1	0	0.00	0	8
			2	169,095,048	3.98	4	4
			3	171,050,932	4.02	4	
Pike	10	766,019,970	1	0	0.00	0	10
			2	452,117,144	5.90	6	
			3	313,902,826	4.10	4	
Warren	12	1,347,270,910	1	544,629,990	4.85	5	12
			2	456,725,567	4.07	4	
			3	345,915,353	3.08	3	
Totals	150	17,154,673,400	1	6,857,628,506	43.09	43	150
			2	6,978,430,544	64.93	67	
			3	3,318,614,350	41.98	40	
			-	17,154,673,400	150.00	150	

2.3 SELECTION OF DATA COLLECTION SITES

- After the counties and number of sites (by roadway type) in each county were selected, the next portion of the methodology involved: a) randomly selecting roadway segments in each roadway type and b) selecting specific sites within each segment. A file containing all roads in the state (including both state maintained and locally maintained) was used to randomly select roadway segments. The source of the road segment data was the Highway Performance Monitoring System (HPMS) file. This file is updated annually and contains data for all public roadways. No exclusions were made.
- The segments were divided into the three highway type categories as previously noted. Segments were randomly selected (by highway type). Segment length was factored into the selection process, with longer sections having a higher probability of selection than shorter sections. The number of randomly selected segments for each highway type category in each county was more than required (see Table 2) to compensate for segments where there were no appropriate data collection sites.
- The randomly selected segments were inspected either remotely, using online imagery, or through a site visit. The necessary numbers of data collection sites (shown in Table 2) were identified for each county and highway type (using the randomly selected segments). Site selection ensured that the observers could obtain data safely and effectively
- Appendix A contains a list of the 150 data collection sites (and alternate sites). The county and road name or number is given along as well as a reference to locate the observation site. The highway where the data is to be collected is identified. The probability of selection for each site is provided.
- At least one alternative site was identified for each highway type in each county in the event data could not be obtained at one of the identified sites. If a site was temporarily unavailable, the data collection was rescheduled for a similar day and time. If a site was unavailable for a substantial period of time, the alternative site was used, with data collected at a similar day and time. To remain consistent, the alternate site will replace the discarded site in future surveys.
- The number of approaches (by direction of travel) and lanes on the approaches on the specified road were identified at each site. The approach and lane used to collect data were randomly selected.
- Data collectors were positioned at a location to ensure their safety while collecting data.

2.4 DATA COLLECTION PROCEDURE

- Observation times for the 150 sites were randomly assigned (with consideration of grouping sites in counties). Sites in relatively close proximity to one another were designated data collection clusters. The first site within each cluster was assigned a random day and time for completion. Next, all other sites within a cluster were assigned a random time on the same day to maximize efficiency (and minimize time and travel costs).
- Data were collected for one hour at each site with either one or two data collectors (depending on the number of directions of travel included). One hour was required if data were gathered by one data collector on one direction of travel, whereas ½ hour was needed if there were two data collectors on separate directions of travel. There is a reasonable assumption that, for sites where one observer is used, the observed vehicles in one direction on a specific route in one hour will equal the number of vehicles on both directions on that route in ½ hour. Sites requiring only one observer are low-volume roads or T-intersections. On roads with higher traffic volumes, an equal distribution of traffic flow in each direction. The use of a variable observation period (as described) does not affect the probability of selection.
- Data collection was slated to occur between June 1 and July 31. Data collection guidelines stated that data would be collected between 7 am and 6 pm, with all days of the week eligible. The schedule included rush hour and non-rush hour observations. Start times were staggered to ensure the surveys captured a representative number of sites for each day of the week and time of day.
- Data were collected through direct observation. Appendix B contains the form used to collect and record data. Data were collected using paper forms. The form allows data collectors to record information such as the site number and the date and time of data collection. For drivers and front seat passengers the categories are:
 - 1. safety belt used (shoulder belt is in front of shoulder),
 - 2. safety belt not used (shoulder belt not in front of shoulder), and
 - 3. unknown (cannot be determined if belt is used).

The presence or absence of a passenger in the right front seat is shown by comparing the total number of drivers and passengers in the sample size. Observation for any right seat passenger was obtained for all vehicles. The number of vehicles at a site with only a driver can be calculated by subtracting the total number of front seat passengers from the total number of vehicles observed. The ratio of the total number of recorded unknown values of

belt use to the total number of drivers and passengers observed must not exceed 10 percent. Additional data were collected if the nonresponse threshold was surpassed.

- The following vehicle types (both in-state and out-of-state vehicles) were included in the data collection:
 - 1. Passenger car (PC) (including commercial vehicles under 10,000 pounds)
 - 2. Pickup (PU)
 - 3. Van
 - 4. Sport utility vehicle (SUV)

Separate data for motorcycles and bicycles were also collected to compare current data to past data for these categories.

- Before starting data collection, data collectors were provided training on the data collection procedure. The training included:
 - 1. An overview of the project
 - 2. Description of the data collection form and procedure
 - 3. Scheduling procedures
 - 4. Identification of survey sites (and alternatives)
 - 5. Data input.

After the classroom portion of the training, the data collectors conducted trial surveys at locations representative of the three roadway types included in the survey. The trial survey results were evaluated to ensure that the data collectors provided consistent and accurate data.

• Times and locations were assigned, with data collected using the previously described form. Drivers received no indication that the data collectors were conducting a safety belt survey. For high volume locations, randomized selection was achieved by recording data for the next vehicle in view after recording the previous data. At low volume locations, data for the driver and outboard front seat passenger were obtained for all vehicles so there was no need for a random selection. For each vehicle, the usage for the driver and any outboard front seat passenger was noted. At intersections, data were collected for vehicles either stopped or moving slowly. At overpasses on limited access highways, an observation position was chosen to allow for an unobstructed view of the vehicle's front seat. • The objective was that a quality control monitor would conduct random, unannounced visits and collect data at a minimum of 15 of the data collection sites. It was anticipated that there would be approximately four to six data collectors with a couple of quality control monitors. All data collectors were monitored on at least two occasions.

2.5 USAGE RATE CALCULATIONS

• The following paragraphs summarize the calculation used to estimate the statewide seat belt usage rate.

Seat belt usage rates were calculated using formulas based on the proportion of the state's total VMT represented by the site. The seat belt usage rate calculations followed a four-step process.

First, estimated rates were calculated for each of the road strata within each county. Observed usage rates for all of the sites within each stratum-county combination were combined through simple averaging, as shown in the following formula (1). (Since the sites' original probability of being included in the sample was proportional to their VMT, averaging their usage rates makes use of that sampling probability to reflect their different VMTs).

$$p_{i(j)k} = \sum_{l=1}^{n_{i(j)k}} p_{i(j)kl} / n_{i(j)k}$$
(1)

where i(j) = county i within category j (category 1 = the 2 certain-selection counties, Jefferson and Fayette Counties, and category 2 = the 13 random-selection counties); k = road functional class stratum; l = site within stratum and county; $n_{i(j)k} = \text{number of sites}$ within the stratum-county combination; and $p_{i(j)kl} =$ the observed seat belt use rate at site i(j)kl =B_{i(j)kl}/O_{i(j)kl} (where B_{i(j)kl} = total number of belted occupants (drivers and outboard front-seat passengers) observed at the site and O_{i(j)kl} = total number of occupants (excluding unknown usage) whose belt use was observed at the site).

Second, a county-by-county seat belt use rate, $p_{i(j)}$, was obtained by combining countystratum seat belt use rates across strata within counties. These were weighted by the class's relative contribution to total county VMT:

$$p_{i(j)} = \frac{\sum_{k} VMT_{i(j)k} p_{i(j)k}}{\sum_{k} VMT_{i(j)k}}$$
(2)

where $VMT_{i(j)k} = VMT$ of all roads in stratum k in county i(j), and $p_{i(j)k} =$ seat belt use rate for stratum k in county i(j).

In the third step, category-weighted seat belt use rates were obtained by combining and weighting the rates from the sampled counties in each category by their VMT values and probabilities of being selected:

$$p_{j} = \frac{\sum_{i} VMT_{i(j)} W_{i(j)} p_{i(j)}}{\sum_{i} VMT_{i(j)} W_{i(j)}}$$
(3)

where $VMT_{i(j)}$ = total VMT for county *i* in category *j* and $W_{i(j)}$ = the inverse of the probability of the county's selection: where j is one of the three following categories:

One county randomly selected from district (j = 1)

Highway Districts 1,2,3,4,8,9,10,11, and 12

$$W_{i(1)} = \frac{\sum_{L=1}^{x_m} VMT_{L(1)}}{VMT_{i(1)}}$$
 where m = county i's district, x_m = the number of counties in District m, L

is the Lth county in District m, $VMT_{L(1)}$ = the VMT in county L, $VMT_{i(1)}$ = the VMT in county i.

One county randomly selected from district and one county certainly selected (j = 2)

Highway Districts 5 and 7

 $W_{i(2)} = \frac{\sum_{L=1}^{y_m} VMT_{L(2)}}{VMT_{i(2)}}$ where m = county i's district, y_m = the number of counties in district m

excluding the certain county, L is the Lth county in district m, $VMT_{L(2)}$ = the VMT in county L, $VMT_{i(2)}$ = the VMT in county i.

Or for certainty counties:

 $W_{i(2)} = 1$

Two counties randomly selected from district (j = 3)

Highway District 6 only

 $W_{i(3)} = \frac{\sum_{L=1}^{11} VMT_{L(3)}}{2 \times VMT_{i(3)}}$ where L is the Lth county in District 6, VMT_{L(3)} = the VMT in county L,

 $VMT_{i(3)}$ = the VMT in county i.

Finally, the statewide belt use proportion was calculated by combining the category proportions weighted by their proportion of statewide VMT:

$$p = \frac{\sum_{j=1}^{3} VMT_{j} p_{j}}{\sum_{j=1}^{3} VMT_{j}}$$
(4)

The result is a combination of the individual site seat belt usage rates weighted to reflect each site's importance in the total state VMT.

Estimates of subgroups of occupants, such as drivers or passengers and vehicle type (passenger car, pickup, etc.) were calculated using the same procedure.

2.6 NONRESPONSIVE JUDGEMENT

Based on data collection protocol and past experience, including the provision for using
alternate observation sites, road segments with non-zero eligible volume and zero
observations conducted should not occur. Nevertheless, if eligible vehicles passed an eligible
site or an alternate eligible site during the observation time, but no usable data were collected
for some reason, this site would be considered a non-responding site. The weight for a nonresponding site was distributed over other sites in the same road type in the same PSU.

Let:

$$\pi_{gchi} = \pi_{gc} \pi_{hi|gc}$$

be the road segment selection probability, and

$$w_{gchi} = \frac{1}{\pi_{gchi}}$$

be the road segment weight.

The non-responding site nonresponse adjustment factor:

$$f_{gch} = \frac{\sum_{all \ i} w_{gchi}}{\sum_{responding \ i} w_{gchi}}$$

would be multiplied to all weights of non-missing road segments in the same road type of the same county, and the missing road segments would be dropped from the analysis file. However, if there were no vehicles passing the site during the selected observation time (60 minutes) this was treated as an empty block at this site. Accordingly, the site would not be considered as a non-responding site and would not require non-response adjustment.

2.7 IMPUTATION

No imputation was done on missing data.

2.8 STANDARD ERROR CALCULATION

• The standard error of the overall seat belt use rate was calculated using the following procedure. Standard error of estimate values was estimated through a jackknife approach, based on the general formula:

$$\hat{\sigma}_{\hat{p}} = \left[\frac{n-1}{n} \sum_{i=1}^{n} (\hat{p}_{i} - \hat{p})^{2}\right]^{1/2}$$
(5)

where $\hat{\sigma}_{\hat{p}}$ = standard deviation (standard error) of the estimated statewide seat belt use proportion \hat{p} (equivalent to *p* in the notation of formulas 1-4); *n* = the number of sites (i.e., 150); and \hat{p}_i = the estimated statewide belt use proportion with site *i* excluded from the calculation.

The relative error rate, i.e., $\hat{\sigma}_{\hat{p}} / \hat{p}$, was also calculated, as well as the 95% confidence interval, i.e., $\hat{p} \pm 1.96 \hat{\sigma}_{\hat{p}}$. These values were reported for the overall statewide seatbelt use rate.

3.0 SURVEY RESULTS

- Table 3 summarizes usage rates for all front seat occupants (drivers and passengers) for the various types of highways and road classifications. The overall statewide usage rate in 2015, using the data collected at 150 sites and the described weighting procedure, was 86.7 percent. The 95 percent confidence interval is approximately 0.6 percent (86.1 to 87.3).
- The sample size of all front seat occupants was approximately 76,000. The statewide rate for drivers was 86.7 percent, whereas it was 86.8 percent for front seat passengers.

	PE	RCENT USAGE BY TYPE	
ROAD CLASSIFICATION	DRIVERS	PASSENGERS	ALL
Limited Access	92.6	92.5	92.5
Arterials	86.7	87.0	86.7
Locals	80.3	80.2	80.3
All	86.7	86.8	86.7

TABLE 3. USAGE RATE FOR FRONT-SEAT OCCUPANTS (BY ROAD CLASS)

- Appendices D and E provide summaries of the data collected (by site). For each site, the usage rate and sample size are given for all front seat occupants, drivers, and front seat passengers. The relative error and confidence interval are given for the "all front seat occupants" category. The percent unknown is given for each site. Also, the site type (original or alternate), date observed, and sample weight are provided.
- Usage rates ranged from 55.0 percent (a rural, local location in Lincoln County) to 96.9 percent (an interstate location in Jefferson County). There were 50 sites that had a usage rate of 90 percent or more, with 30 of these sites on a limited access road. The highest rate found on a non-limited access road was 93.5 percent at a high-volume urban arterial in McCracken County.
- The highest unknown rate was 8.9 percent. Only nine sites had unknown usage rates exceeding five percent.

- A substantial difference in usage rate (for all front seat occupants) was noted when vehicle type and road class were considered (Table 4). The rate varied by vehicle type from 78.4 percent for pickup trucks to 90.1 percent for vans.
- For each vehicle type the lowest usage rate was on local roads, while the highest rate was on limited access highways.
- Examining usage rates according to road class revealed that rates ranged from 80.3 percent on local roads to 92.5 percent on limited access highways.
- The lowest usage was 70.0 percent, recorded for pickups on local roads.
- The highest usage rate (94.1 percent), recorded was for SUVs on limited access highways.

TABLE 4. USAGE RATE FOR FRONT-SEAT OCCUPANTS (BY ROAD CLASS AND VEHICLE TYPE) PERCENT USAGE BY VEHICLE TYPE

ROAD CLASSIFICATION	PC	PU	VAN	SUV	ALL*
Limited Access	93.2 88.4	86.4 77.2	93.3 88 7	94.1 88.8	92.5 86 7
Locals	82.5 88.4	70.0	87.7 90.1	86.7 89.4	80.3 86.7

PC – passenger car PU – pickup VAN – van SUV – sport utility vehicle

- Table 5 summarizes usage rate by county. The rate varied from a high of 91.0 percent in Kenton County to a low of 71.3 percent in Clay County. The rate exceeded 90 percent in three counties and was less than 80 percent in six counties.
- Pike County had the second lowest usage rate (74.4 percent), while Lincoln Country had the the third lowest rate (75.3 percent). Each of the three counties located in the southeast portion of the state had usage rates under 80 percent.
- From 2014 to 2015, usage rates increased in 9 of the 15 counties. The largest increase in the usage rate (2.8 percent) occurred in McCracken County. The largest decrease was in Lincoln County (7.4 percent).

COUNTY	DRIVERS	PASSENGERS	ALL
Bourbon	77.8	75.4	77.7
Bullitt	88.2	86.0	87.9
Clay	71.7	69.4	71.3
Fayette	90.7	89.5	90.5
Greenup	84.7	88.1	85.4
Harrison	77.3	83.4	77.9
Hart	87.8	82.6	86.7
Henderson	85.6	85.7	85.7
Jefferson	89.6	91.1	89.8
Kenton	91.5	88.0	91.0
Lincoln	75.6	74.1	75.3
McCracken	90.9	91.0	90.9
Perry	76.6	77.2	76.9
Pike	73.7	76.8	74.4
Warren	86.9	88.1	87.2
All	86.7	87.0	86.7

TABLE 5. USAGE RATE FOR FRONT-SEAT OCCUPANTS (BY COUNTY) PERCENT USAGE BY TYPE

• Usage rates by county and vehicle type are presented in Table 6. These rates ranged from a high of 95.0 percent for SUVs in McCracken County to a low of 62.9 percent for pickup trucks in Clay County. The usage rate for pickup trucks was less than 70 percent in five counties.

-					
COUNTY	PC	PU	VAN	SUV	ALL
Bourbon	82.4	68.3	81.8	78.9	77.7
Bullitt	90.4	80.9	90.5	87.9	87.9
Clay	72.0	62.9	85.5	76.5	71.3
Fayette	92.2	78.5	92.5	92.7	90.5
Greenup	85.6	77.7	91.1	89.3	85.4
Harrison	83.1	70.4	94.3	79.2	77.9
Hart	89.3	80.5	88.0	88.0	86.7
Henderson	84.8	81.9	89.7	91.9	85.7
Jefferson	90.4	82.3	91.1	91.8	89.8
Kenton	91.1	84.6	93.0	92.6	91.0
Lincoln	84.4	69.4	95.3	78.4	75.3
McCracken	91.3	83.2	94.7	95.0	90.9
Perry	79.9	64.6	81.9	82.8	76.9
Pike	77.8	65.2	78.5	79.4	74.4
Warren	89.2	77.7	87.2	92.7	87.2
All	88.4	78.4	90.1	89.4	86.7

 TABLE 6.
 USAGE RATE FOR FRONT-SEAT OCCUPANTS (BY COUNTY AND VEHICLE TYPE)

 PERCENT USAGE BY VEHICLE TYPE

• While the data collection procedure has changed several times, 2015 usage rates can still be compared to the statewide rates from past years (Table 7). Statewide rates have dramatically increased from four percent in 1982 to 87 percent in 2015. Increased usage over the years is related to a combination of changes in safety belt legislation and increased enforcement and education.

THELE 7. THE OF	TABLE 7.	TREND IN	STATEWIDE	USAGE RATES
---	----------	----------	------------------	-------------

	ALL FRONT SEAT		CHILDREN UNDER FOUR
YEAR	OCCUPANTS	DRIVERS	YEARS OF AGE*
1982	**	4	15
1983	**	6	24
1984	**	7	30
1985	9	9	29
1986	13	13	30
1988	20	21	48
1989	25	26	49
1990	33	32	57
1991	39	39	57
1992	40	41	62
1993	42	42	61
1994	58	58	72
1995	54	54	66
1996	55	55	79
1997	54	54	82
1998	54	54	80
1999	59	59	89
2000	60	60	87
2001	62	62	89
2002	62	62	93
2003	66	65	95
2004	66	66	96
2005	67	67	94
2006	67	68	94
2007	72	72	98
2008	73	74	98
2009	80	80	99
2010	80	81	96
2011	82	83	97
2012	84	84	98
2013	85	85	**
2014	86	87	**
2015	87	87	**

PERCENT USING SAFETY BELTS

*Children using either safety seat or safety belt. Children seated in front or rear seat. **Data not obtained.

• Survey locations have changed due to modifications of the data collection procedure (in 1990, 1999, 2009, and 2013). For the past several years, a mini-survey of 21 sites has been conducted (selected from the 200 sites for the survey first used prior to the change in sites made in 2009).

This mini-survey was conducted in 2015 to facilitate a comparison of identical sites over a long time period. Appendix F contains the results for the mini-survey sites. The usage rate at the mini-survey locations in 2015 was 87.6 percent. This shows consistency with the official 2015 data. The statewide rate in 2015 for the mini-survey locations increased 0.2 percent over 2014. Usage rates increased at 10 locations and decreased at five locations, with six not changing.

- Bicycle helmet use was observed during data collection. Only 67 bicyclists were observed, and just 24 used helmets (36 percent). The small sample size prevents drawing inferences about usage trends but does support the opinion that bicycle helmet usage rate continues to be very low.
- During the survey, data collectors observed helmet use by motorcyclists. The sample size was 605. Until it was repealed in 1998, Kentucky had a statewide law requiring the use of a helmet by a motorcyclist. Surveys before the law's repeal found a helmet usage rate exceeding 95 percent. Motorcyclist helmet usage rates for 1999 through 2015 (after repeal of the mandatory helmet law) are provided in Table 8. The average usage rate over the 17-year period following the repeal of mandatory helmet usage laws was 58.5 percent (with 61.6 percent in 2015). Helmet use varied by highway type, with 79 percent on limited access roadways, 57 percent on arterials, and 50 percent on local roads. The usage rate over these years has ranged from a low of 50 percent in 2010 to a high of 70 percent in 2000.

YEAR	SAMPLE SIZE	PERCENT USAGE
1999	452	65
2000	427	70
2001	395	56
2002	596	57
2003	512	56
2004	631	58
2005	918	59
2006	949	60
2007	897	56
2008	1,244	58
2009	537	64
2010	780	50
2011	699	52
2012	833	53
2013	487	57
2014	494	61
2015	605	62

TABLE 8. TREND IN MOTORCYCLE HELMET USAGE

PERCENT USING HELMET

4.0 **RECOMMENDATIONS**

- The data show that the level of safety belt usage in 2015 (86.7 percent) was the highest since surveys began in 1982. The usage rate increased 0.6 percent in 2015. Progressive increases in usage rates observed since 1982 can be related to the enactment and enforcement of safety belt laws along with increased education.
- The data support maintaining the education and enforcement efforts of the primary safety belt law. Safety belt usage varies by county and vehicle type. Focusing on this variability indicates where more emphasis should be placed.
- Consideration should be given to modifying the driver point system so that a driver receives points when they are cited for failure to use a safety belt. This could aid enforcement.
- Consideration should be given to increasing the amount drivers are fined when cited for failure to wear a safety belt.

Appendix A.

Data Collection Sites

Appendix A- T	able 1. Data	Collection Sites
---------------	--------------	-------------------------

Site	County	Road Type	Road Surveyed	Reference	Section Length (mi)	Total Length (mi)	Probability of Selection
1	Bourbon	Arterial	US 27	Fords Mill Rd	1.335	61.22	0.0218
2	Bourbon	Arterial	US 460	US 27	0.941	61.22	0.0154
3	Bourbon	Arterial	US 460	US 68	12.402	61.22	0.2026
4	Bourbon	Arterial	US 68	4 th Street	0.844	61.22	0.0138
5	Bourbon	Local Road	Castle Blvd	KY 1939	0.54	329.975	0.0016
6	Bourbon	Local Road	KY 1678	KY 57 (Briar Hill Rd)	7.63	329.975	0.0231
7	Bullitt	Arterial	KY 44	US 31EX	2.97	67.52	0.0440
8	Bullitt	Arterial	KY 61	KY 44	2.52	67.52	0.0373
9	Bullitt	Arterial	US 31E	KY 44	1.569	67.52	0.0232
10	Bullitt	Limited Access	I-65	KY 733 overpass	8.465	19.871	0.4260
11	Bullitt	Limited Access	I-65	KY 245 interchange	3.801	19.871	0.1913
12	Bullitt	Limited Access	I-65	KY 3219 overpass	3.801	19.871	0.1913
13	Bullitt	Limited Access	I-65	KY 61 overpass	7.606	19.871	0.3828
14	Bullitt	Access	I-65	KY 1526 interchange	7.606	19.871	0.3828
15	Bullitt	Local Road	Armstrong Ln	KY 44	0.576	727.145	0.0008
16	Bullitt	Local Road	Smith Ln	Hillview Blvd	0.506	727.145	0.0007
17	Clay	Arterial	Hal Rogers Pkwy	KY 80 underpass	25.336	41.431	0.6115
18	Clay	Arterial	US 421	2 nd Street	8.808	41.431	0.2126
19	Clay	Arterial	US 421	KY 638	1.997	41.431	0.0482
20	Clay	Local Road	KY 11	US 421	17.732	729.333	0.0243
21	Clay	Local Road	KY 638	KY 472	8.222	729.333	0.0113
22	Clay	Local Road	KY 1524	US 421	0.369	729.333	0.0005
23	Fayette	Arterial	Cooper Dr	Nicholasville Rd	0.078	155.491	0.0005
24	Fayette	Arterial	Man O War Blvd	Clays Mill Rd	4.4	155.491	0.0283
25	Fayette	Arterial	Man O War Blvd	Tates Creek Rd	4.4	155.491	0.0283
26	Fayette	Arterial	New Circle Rd	N. Broadway	1.58	155.491	0.0102
27	Fayette	Arterial	Russell Cave Rd	New Circle Rd	9.117	155.491	0.0586
28	Fayette	Arterial	Versailles Rd	Man O War Blvd.	1.516	155.491	0.0097
29	Fayette	Arterial	Winchester Rd	Elkhorn Dr	1.173	155.491	0.0075
30	Fayette	Access	I-64	KY 859 interchange	7.71	49.024	0.1573
31	Fayette	Access	I-64	Yarnallton Pk overpass	3.729	49.024	0.0761
32	Fayette	Limited	I-75	KY 353 overpass	7.016	49.024	0.1431
33	Fayette	Limited Access	I-75	KY 418 interchange	6.187	49.024	0.1262
34	Fayette	Limited	KY 4	Alumni Dr interchange	2.905	49.024	0.0593
35	Fayette	Limited Access	KY 4	Georgetown Rd interchange	2.085	49.024	0.0425

					Section	Total	Duchahility
Site	County	Road Type	Road Surveyed	Reference	Length (mi)	Length (mi)	of Selection
36	Fayette	Local Road	Alexandria Dr	Versailles Rd	2.776	1240.085	0.0022
37	Fayette	Local Road	Kenesaw Dr	Tates Creek Rd	0.575	1240.085	0.0005
38	Fayette	Local Road	Newtown Pk	Ironworks Rd	3.141	1240.085	0.0025
39	Greenup	Arterial	KY 10	US 23	11.582	66.893	0.1731
40	Greenup	Arterial	KY 67	US 23	7.53	66.893	0.1126
41	Greenup	Arterial	KY 693	KY 207 (Argillite Rd)	1.656	66.893	0.0248
42	Greenup	Arterial	US 23	KY 67	8.595	66.893	0.1285
43	Greenup	Arterial	US 23	KY 10	10.813	66.893	0.1616
44	Greenup	Local Road	KY 2	US 23	0.373	929.912	0.0004
45	Greenup	Local Road	KY 827	KY 7	5.647	929.912	0.0061
46	Greenup	Local Road	Pond Run Rd	KY 750	0.902	929.912	0.0010
47	Harrison	Arterial	KY 36	Locust St	15.309	47.165	0.3246
48	Harrison	Arterial	US 27	KY 32	1.067	47.165	0.0226
49	Harrison	Arterial	US 62	US 27	0.273	47.165	0.0058
50	Harrison	Local Road	KY 1054	KY 36	6.851	499.878	0.0137
51	Harrison	Local Road	KY 1842	KY 32	6.214	499.878	0.0124
52	Harrison	Local Road	KY 392	US 62	11.337	499.878	0.0227
53	Hart	Arterial	US 31W	KY 218	6 7 5 8	21 574	0.3132
54	Hart	Limited Access	I-65	KY 2746 overpass	20.666	20.665	1.0000
55	Hart	Limited Access	I-65	KY 218	20.666	20.665	1.0000
56	Hart	Limited Access	I-65	Rowletts Cave Springs Rd overpass	20.666	20.665	1.0000
57	Hart	Limited Access	I-65	KY 88 overpass	20.666	20.665	1.0000
58	Hart	Limited Access	I-65	KY 728 interchange	20.666	20.665	1.0000
59	Hart	Local Road	KY 728	US 31W	13.329	711.88	0.0187
60	Hart	Local Road	KY 88	US 31E	12.665	711.88	0.0178
61	Henderson	Arterial	KY 351	US 41A	1.817	98.715	0.0184
62	Henderson	Arterial	KY 425	US 60	2.429	98.715	0.0246
63	Henderson	Arterial	KY 425	US 41A	2.429	98.715	0.0246
64	Henderson	Arterial	US 41	Watson Ln	4.994	98.715	0.0506
65	Henderson	Arterial	US 41	KY 425	3.738	98.715	0.0379
66	Henderson	Arterial	US 41A	KY 136 (Sand Ln)	2.709	98.715	0.0274
67	Henderson	Arterial	US 60	KY 425	1.573	98.715	0.0159
68	Henderson	Limited Access	Breathitt Pkwy	KY 812 overpass	2.052	4.457	0.4604
69	Henderson	Local Road	KY 3	US 60	0.073	752.948	0.0001
70	Henderson	Local Road	KY 416	KY 351	5.274	752.948	0.0070
71	Jefferson	Arterial	2nd Street	Broadway (US 150)	0.61	445.833	0.0014
72	Jefferson	Arterial	Bardstown Rd	Taylorsville Rd	3.768	445.833	0.0085
73	Jefferson	Arterial	Barret Ave	Broadway (US 150)	1.072	445.833	0.0024
74	Jefferson	Arterial	Bluegrass Pkwy	Hurstbourne Pkwy	0.13	445.833	0.0003
75	Jefferson	Arterial	Crittenden Dr	Central Ave	2.754	445.833	0.0062

Appendix A- Table 1. Data Collection Sites (continued)

Site	County	Road Type	Road Surveyed	Reference	Section Length (mi)	Total Length (mi)	Probability of Selection
76	Jefferson	Arterial	Newburg Rd	Trevilian Way	1.854	445.833	0.0042
77	Jefferson	Arterial	KY 841	National Turnpike	4.216	445.833	0.0095
78	Jefferson	Arterial	Phillips Ln	Fairgrounds Road	0.772	445.833	0.0017
79	Jefferson	Arterial	Shepherdsville Rd	Outer Loop (KY 1065)	0.689	445.833	0.0015
80	Jefferson	Limited Access	I-264	KY 1932 interchange	3.396	109.343	0.0311
81	Jefferson	Limited Access	I-64	Cannons Ln interchange	6.77	109.343	0.0619
82	Jefferson	Limited Access	I-264	US 42 interchange	2.192	109.343	0.0200
83	Jefferson	Limited Access	I-265	Smyra Parkway	9.64	109.343	0.0882
84	Jefferson	Limited Access	I-265	Preston Hwy interchange	2.159	109.343	0.0197
85	Jefferson	Limited Access	I-64	English Station Rd overpass	4.415	109.343	0.0404
86	Jefferson	Access	I-65	Outer Loop interchange	1.143	109.343	0.0105
87	Jefferson	Limited Access	I-65	Fern Valley Rd interchange	3.272	109.343	0.0299
88	Jefferson	Limited Access	I-71	KY 1694 overpass	2.252	109.343	0.0206
89	Jefferson	Limited Access	I-71	Lime Kiln Ln overpass	4.097	109.343	0.0375
90	Jefferson	Limited Access	KY-841	US 42 overpass	1.575	109.343	0.0144
91	Jefferson	Local Road	McCawley Rd	Preston Highway	0.085	2977.538	0.0000
92	Jefferson	Local Road	W. Manslick Rd	3rd Street Rd	2.256	2977.538	0.0008
93	Kenton	Arterial	KY 17	Dudley Pk	2.729	70.185	0.0389
94	Kenton	Arterial	KY 1829	KY 1303	2.895	70.185	0.0412
95	Kenton	Arterial	US 25	KY 236	2.29	70.185	0.0326
96	Kenton	Limited Access	I-275	KY 16 interchange	4.451	19.423	0.2292
97	Kenton	Limited Access	I-275	KY 1303 interchange	4.451	19.423	0.2292
98	Kenton	Limited Access	I-275	Hulbert Ave	1.75	19.423	0.0901
99	Kenton	Limited Access	I-75	Kyles Ln interchange	2.477	19.423	0.1275
100	Kenton	Limited Access	I-75	Buttermilk Pike interchange	2.98	19.423	0.1534
101	Kenton	Limited Access	I-75	Dixie Highway interchange	2.98	19.423	0.1534
102	Kenton	Limited Access	I-75	KY 236 interchange	1.038	19.423	0.0534
103	Kenton	Local Road	KY 2047	KY 16	2.587	920.539	0.0028
104	Kenton	Local Road	Marshall Rd	Taylor Mill Rd	2.497	920.539	0.0027
105	Lincoln	Arterial	US 150	US 27	8.473	51.441	0.1647

Appendix A- Table 1. Data Collection Sites (continued)

Appendix A- Table 1. Data	Collection Sites (continued)
---------------------------	--------------------	------------

Site	County	Road Type	Road Surveyed	Reference	Section Length (mi)	Total Length (mi)	Probability of Selection
106	Lincoln	Arterial	US 150	Spring Valley Dr	0.125	51.441	0.0024
107	Lincoln	Arterial	US 27	KY 78	2.182	51.441	0.0424
108	Lincoln	Arterial	US 27	Lancaster St	2.182	51.441	0.0424
109	Lincoln	Local Road	Cordier Rd	US 150	0.421	633.961	0.0007
110	Lincoln	Local Road	KY 2750	US 150	0.974	633.961	0.0015
111	McCracken	Arterial	Jefferson St	N. 9th St	0.052	95.398	0.0005
112	McCracken	Arterial	KY 994	S. 21st St	0.748	95.398	0.0078
113	McCracken	Arterial	US 60	KY 996	7.118	95.398	0.0746
114	McCracken	Arterial	US 60	KY 284 (Bridge St)	3.258	95.398	0.0342
115	McCracken	Limited Access	I-24	US 62 interchange	6.707	17.319	0.3873
116	McCracken	Limited Access	I-24	US 68 interchange	5.235	17.319	0.3023
117	McCracken	Limited Access	I-24	KY 994 overpass	6.707	17.319	0.3873
118	McCracken	Local Road	KY 1288	US 45	3.294	760.039	0.0043
119	McCracken	Local Road	KY 1954	KY 348	3.04	760.039	0.0040
120	McCracken	Local Road	Highland Church Rd	US 62	1.632	760.039	0.0021
121	Perry	Arterial	Hal Rogers Pkwy	Morton Blvd.	6.474	41.192	0.1572
122	Perry	Arterial	KY 15	KY 451	5.007	41.192	0.1216
123	Perry	Arterial	KY 15	KY 80	9.211	41.192	0.2236
124	Perry	Arterial	KY 80	Justice Dr	6.74	41.192	0.1636
125	Perry	Local Road	KY 451	KY 28	0.823	738.756	0.0011
126	Perry	Local Road	KY 1096	Polly Hollow	5.42	738.756	0.0073
127	Perry	Local Road	KY 451	Main St	1.904	738.756	0.0026
128	Perry	Local Road	KY 1146	KY 476	10.527	738.756	0.0142
129	Pike	Arterial	KY 1426	KY 1460	0.738	118.625	0.0062
130	Pike	Arterial	KY 194	KY 632	13.683	118.625	0.1153
131	Pike	Arterial	US 119	US 23	2.672	118.625	0.0225
132	Pike	Arterial	US 119	KY 308	2.021	118.625	0.0170
133	Pike	Arterial	US 23	Julius Avenue	1.956	118.625	0.0165
134	Pike	Arterial	US 23	Island Creek Rd	1.956	118.625	0.0165
135	Pike	Local Road	KY 611	US 23	0.226	1226.433	0.0002
136	Pike	Local Road	KY 122	US 460	15.942	1226.433	0.0130
137	Pike	Local Road	KY 3218	US 23	3.247	1226.433	0.0026
138	Pike	Local Road	KY 610	KY 805	7.969	1226.433	0.0065
139	Warren	Arterial	KY 234	KY 880	2.347	82.267	0.0285
140	Warren	Arterial	KY 446	Corvette Dr	0.97	82.267	0.0118
141	Warren	Arterial	US 231	KY 880	1.413	82.267	0.0172
142	Warren	Arterial	US 31W	KY 1402	1.249	82.267	0.0152
143	Warren	Limited Access	I-65	KY 240 overpass	5.689	36.621	0.1553
144	Warren	Limited Access	I-65	US 231 interchange	1.43	36.621	0.0390

Site	County	Road Type	Road Surveyed	Reference	Section Length (mi)	Total Length (mi)	Probability of Selection
145	Warren	Limited Access	I-65	Bristow Road overpass	7.565	36.621	0.2066
146	Warren	Limited Access	I-65	KY 101 interchange	5.312	36.621	0.1451
147	Warren	Limited Access	Natcher Pkwy	US 231 interchange	5.003	36.621	0.1366
148	Warren	Local Road	KY 1297	KY 101	9.264	1318.503	0.0070
149	Warren	Local Road	KY 622	US 231	3.229	1318.503	0.0024
150	Warren	Local Road	KY 101	US 31W	0.568	1318.503	0.0004

Appendix A- Table 1. Data Collection Sites (continued)

Site	Road Class	County	Road Surveyed	Reference
151	Arterial	Bourbon	US 627 (Winchester Rd)	KY 57
152	Local Road	Bourbon	KY 57	US 627 (Winchester Rd)
153	Arterial	Bullitt	KY 61	KY 1526
154	Limited Access	Bullitt	I-65	KY 44 interchange
155	Local Road	Bullitt	KY 1531	KY 1319
156	Arterial	Clay	US 421	KY 638
157	Local Road	Clay	KY 472	Bray Creek Rd
158	Arterial	Fayette	Tates Creek Rd	Lansdowne Dr
159	Limited Access	Fayette	I-64	KY 1678 overpass
160	Local Road	Fayette	Alexandria Dr	US 421
161	Arterial	Greenup	US 23	Ferry St
162	Local Road	Greenup	KY 503 (Naples Rd)	KY 207 (Argillite Rd)
163	Arterial	Harrison	US 27 (Falmouth Rd)	KY 1032 (Berry-Kelat Rd)
164	Local Road	Harrison	KY 19	US 62
165	Arterial	Hart	US 31W	Union St
166	Limited Access	Hart	I-65	Rest Area
167	Local Road	Hart	KY 88	US 31W
168	Arterial	Henderson	US 41	Marywood Dr
169	Limited Access	Henderson	Breathitt Parkway	KY 2099 overpass
170	Local Road	Henderson	KY 812	KY 1078
171	Arterial	Jefferson	KY 146	Whipps Mill Rd
172	Limited Access	Jefferson	I-71	Zorn Ave interchange
173	Local Road	Jefferson	W Kentucky St	S 7th Street
174	Arterial	Kenton	KY 16	U Grand Ave
175	Limited Access	Kenton	I-275	US 25 interchange
176	Local Road	Kenton	Autumn Rd	Old Turkey Foot Rd
177	Arterial	Lincoln	US 27	Shopping Center Ent. (Stanford)
178	Local Road	Lincoln	KY 1770	US 150
179	Arterial	McCracken	KY 1286	US 62
180	Limited Access	McCracken	I-24	KY 787 overpass
181	Local Road	McCracken	Powers Rd	KY 131
182	Arterial	Perry	KY 15	KY 1095
183	Local Road	Perry	KY 1146	KY 80
184	Arterial	Pike	US 23	Island Creek Rd
185	Local Road	Pike	KY 468	KY 292
186	Arterial	Warren	US 68	US 231
187	Limited Access	Warren	Natcher Parkway	KY 884 overpass
188	Local Road	Warren	KY 263	KY 185

Appendix A- Table 2. Alternate Data Collection Sites (continued)

Appendix B.

Data Collection Form

SAFETY BELT DATA COLLECTION FORM

Date:	Starting Time:	Ending Time:	Int #:
Location:			Sheet #:

Observer: _____ Comment: _____

DRIVER USAGE

Vehicle	Safety Belt	None	Unknown
PC			
PU			
VAN			
suv			

FRONT-SEAT OCCUPANT USAGE (OVER 3 YEARS OF AGE)

Vehicle	Safety Belt	None	Unknown
PC			
PU			
VAN			
SUV			

USAGE OF MOTORCYCLE HELMET

YES	NO

USAGE OF BICYCLE HELMET

YES	NO

Appendix C.

Data Collection Site Map

Appendix D.

Summary of Data (by Site)

	ALL	FRONT S	SEAT OCC	UPANTS			CATE	GORY	
						DRIV	'ERS	FRON ⁻ PASSE	Г SEAT NGERS
Location		Percent	Relative	Confidence	Percent		Percent		Percent
Number	Sample	Usage	Error*	Interval*	Unknown	Sample	Usage	Sample	Usage
1	435	80.7	4.6	3.7	3.1	352	82.4	83	73.5
2	219	78.1	7.0	5.5	3.5	171	81.3	48	66.7
3	228	78.1	6.9	5.4	3.8	176	79.5	52	73.1
4	335	82.4	5.0	4.1	2.0	274	82.8	61	80.3
5	187	72.2	8.9	6.4	0.0	138	73.2	49	69.4
6	82	75.6	12.3	9.3	0.0	56	69.6	26	88.5
7	695	84.0	3.2	2.7	0.4	579	85.0	116	79.3
8	536	83.2	3.8	3.2	0.4	441	83.9	95	80.0
9	454	88.3	3.3	3.0	5.0	378	88.1	76	89.5
10	1015	93.2	1.7	1.5	0.5	760	93.3	255	92.9
11	1142	93.5	1.5	1.4	0.1	875	93.1	267	94.8
12	1275	94.6	1.3	1.2	0.4	899	94.7	376	94.4
13	1067	90.5	1.9	1.8	0.0	869	90.0	198	92.9
14	1229	91.9	1.7	1.5	0.7	901	91.7	328	92.4
15	109	80.7	9.2	7.4	0.9	95	78.9	14	92.9
16	59	78.0	13.6	10.6	0.0	51	82.4	8	50.0
17	98	82.7	9.1	7.5	7.5	80	85.0	18	72.2
18	461	73.3	5.5	4.0	8.3	363	74.9	98	67.3
19	370	76.5	5.6	4.3	2.4	298	74.8	72	83.3
20	206	59.7	11.2	6.7	4.2	153	60.8	53	56.6
21	36	77.8	17.5	13.6	5.3	30	80.0	6	66.7
22	120	58.3	15.1	8.8	3.2	93	54.8	27	70.4
23	561	92.5	2.4	2.2	0.4	479	93.7	82	85.4
24	431	90.7	3.0	2.7	1.8	398	91.5	33	81.8
25	639	87.8	2.9	2.5	1.2	539	87.9	100	87.0
26	1042	91.3	1.9	1.7	0.0	804	91.0	238	92.0
27	403	89.6	3.3	3.0	0.0	335	89.6	68	89.7
28	590	92.9	2.2	2.1	1.3	513	92.4	77	96.1
29	706	88.1	2.7	2.4	0.8	598	88.5	108	86.1
30	679	89.1	2.6	2.3	1.2	542	90.8	137	82.5
31	733	92.0	2.1	2.0	0.0	548	91.4	185	93.5
32	1043	91.6	1.8	1.7	0.2	747	90.9	296	93.2
33	1077	95.0	1.4	1.3	0.8	710	96.3	367	92.4
34	944	92.9	1.8	1.6	0.0	751	92.7	193	93.8
35	838	90.6	22	2 0	0.9	726	90.6	112	90.2
36	370	85.7	4 2	3.6	19	329	86.0	41	82.9
37	282	90 8	37	34	1 1	238	89.1	44	100 0
38	170	88.2	5.5	4.8	0.0	136	89.0	34	85.3
39	210	84.8	5.7	4.9	3.7	170	84.1	40	87.5

1.2

0.0

66

267

84.8

91.0

94.1

89.3

17

149

7.3

2.8

86.7

90.4

83

416

40

41

8.4

3.1

	ALL	FRONT S	SEAT OCCU	JPANTS			CATE	GORY	
						DRIV	'ERS	FRON ⁻ PASSE	T SEAT NGERS
Location	. .	Percent	Relative	Confidence	Percent		Percent		Percent
Number	Sample	Usage	Error*	Interval*	Unknown	Sample	Usage	Sample	Usage
42	295	88.5	4.1	3.6	2.3	210	86.7	85	92.9
43	280	87.9	4.4	3.8	3.1	223	87.4	57	89.5
44	253	80.2	6.1	4.9	1.6	195	77.9	58	87.9
45	64	79.7	12.4	9.9	0.0	47	80.9	17	76.5
46	388	85.1	4.2	3.5	1.8	318	84.6	70	87.1
47	188	80.9	7.0	5.6	3.6	153	80.4	35	82.9
48	427	82.7	4.3	3.6	2.3	322	82.6	105	82.9
49	292	84.6	4.9	4.1	1.7	253	83.4	39	92.3
50	131	67.9	11.8	8.0	0.0	98	67.3	33	69.7
51	22	77.3	22.7	17.5	0.0	20	75.0	2	100.0
52	169	74.6	8.8	6.6	0.0	125	75.2	44	72.7
53	413	81.8	4.5	3.7	0.7	315	82.5	98	79.6
54	675	94.2	1.9	1.8	1.2	441	94.3	234	94.0
55	780	94.1	1.8	1.7	3.9	532	94.4	248	93.5
56	659	93.8	2.0	1.8	0.0	465	95.1	194	90.7
57	701	93.7	1.9	1.8	0.8	508	93.9	193	93.3
58	831	95.2	1.5	1.5	0.4	574	94.9	257	95.7
59	120	72.5	11.0	8.0	5.5	93	74.2	27	66.7
60	64	70.3	15.9	11.2	0.0	51	74.5	13	53.8
61	440	89.5	3.2	2.9	0.9	367	89.1	73	91.8
62	213	86.9	5.2	4.5	1.8	181	89.0	32	75.0
63	375	89.6	3.4	3.1	2.3	321	89.1	54	92.6
64	807	92.6	2.0	1.8	0.6	646	92.7	161	91.9
65	292	88.0	4.2	3.7	2.0	243	88.1	49	87.8
66	584	88.4	2.9	2.6	2.0	463	87.9	121	90.1
67	556	86.3	3.3	2.9	2.3	445	86.7	111	84.7
68	497	89.7	3.0	2.7	1.4	392	91.3	105	83.8
69	191	83.8	6.2	5.2	2.6	159	83.0	32	87.5
70	41	70.7	19.7	13.9	0.0	29	69.0	12	75.0
71	527	84.4	3.7	3.1	4.4	448	84.6	79	83.5
72	520	85.6	3.5	3.0	0.4	465	85.2	55	89.1
73	391	83.6	4.4	3.7	0.3	353	84.1	38	78.9
74	798	89.8	2.3	2.1	0.0	672	89.4	126	92.1
75	616	88.1	2.9	2.6	1.6	474	86.5	142	93.7
76	646	88.2	2.8	2.5	0.2	545	87.7	101	91.1
77	531	88.9	3.0	2.7	3.8	482	88.2	49	95.9
78	348	87.1	4.0	3.5	2.2	274	87.6	74	85.1
79	415	84.8	4.1	3.5	3.5	363	84.0	52	90.4
80	1367	92.5	1.5	1.4	0.2	1186	92.4	181	93.4
81	1128	93.4	1.6	1.5	0.0	909	93.0	219	95.0

CATEGORY

-

____ _

								FRON	Г SEAT
						DRIV	'ERS	PASSE	NGERS
Location		Percent	Relative	Confidence	Percent		Percent		Percent
Number	Sample	Usage	Error*	Interval*	Unknown	Sample	Usage	Sample	Usage
82	864	93.2	1.8	1.7	1.0	615	93.2	249	93.2
83	892	93.2	1.8	1.7	1.9	643	93.3	249	92.8
84	933	91.4	2.0	1.8	0.2	806	91.2	127	92.9
85	1100	96.2	1.2	1.1	0.0	786	95.8	314	97.1
86	1094	91.7	1.8	1.6	0.7	893	91.5	201	92.5
87	1361	90.0	1.8	1.6	0.7	1127	89.7	234	91.5
88	970	96.9	1.1	1.1	0.7	687	97.4	283	95.8
89	918	92.8	1.8	1.7	0.4	782	92.3	136	95.6
90	387	91.5	3.0	2.8	0.0	347	91.6	40	90.0
91	420	84.3	4.1	3.5	4.8	355	84.5	65	83.1
92	213	82.6	6.2	5.1	5.3	184	82.1	29	86.2
93	640	90.2	2.6	2.3	0.9	495	90.5	145	89.0
94	499	87.8	3.3	2.9	2.0	425	87.8	74	87.8
95	582	89.5	2.8	2.5	0.5	504	90.1	78	85.9
96	1371	91.0	1.7	1.5	0.6	1125	91.1	246	90.7
97	1272	89.6	1.9	1.7	0.6	1047	89.8	225	88.9
98	686	94.8	1.8	1.7	1.2	602	94.9	84	94.0
99	1573	90.4	1.6	1.5	0.1	1232	90.5	341	90.0
100	874	93.2	1.8	1.7	0.0	718	94.4	156	87.8
101	615	90.9	2.5	2.3	0.3	513	91.8	102	86.3
102	618	94.0	2.0	1.9	0.5	516	95.0	102	89.2
103	28	89.3	12.8	11.5	3.4	24	91.7	4	75.0
104	90	91.1	6.5	5.9	3.2	76	90.8	14	92.9
105	504	84.9	3.7	3.1	1.9	401	84.0	103	88.3
106	361	83.9	4.5	3.8	3.5	286	82.5	75	89.3
107	383	80.4	4.9	4.0	1.5	310	80.6	73	79.5
108	409	82.9	4.4	3.6	1.7	331	83.1	78	82.1
109	80	55.0	19.8	10.9	2.4	69	55.1	11	54.5
110	49	71.4	17.7	12.6	5.8	39	74.4	10	60.0
111	388	92.0	2.9	2.7	1.3	308	91.2	80	95.0
112	306	92.8	3.1	2.9	2.2	244	93.9	62	88.7
113	277	88.1	4.3	3.8	1.4	234	87.2	43	93.0
114	554	93.5	2.2	2.1	1.2	458	93.7	96	92.7
115	665	92.5	2.2	2.0	0.6	491	92.7	174	92.0
116	623	90.5	2.5	2.3	0.5	472	90.5	151	90.7
117	848	93.6	1.8	1.6	0.0	585	92.6	263	95.8
118	111	88.3	6.8	6.0	1.8	85	88.2	26	88.5
119	114	88.6	6.6	5.8	3.4	91	89.0	23	87.0
120	263	88.6	4.3	3.8	2.6	202	89.6	61	85.2
121	1136	84.4	2.5	2.1	1.2	908	84.0	228	86.0
122	725	85.0	3.1	2.6	1.9	582	84.5	143	86.7

121

150

84.3

7.7

6.5

4.7

97

84.5

24

83.3

	ALL	FRONT S	SEAT OCC	JPANTS			CATE	GORY	
						DRIV	/ERS	FRON [®] PASSE	T SEAT NGERS
Location		Percent	Relative	Confidence	Percent		Percent		Percent
Number	Sample	Usage	Error*	Interval*	Unknown	Sample	Usage	Sample	Usage
123	521	80.4	4.2	3.4	2.3	400	81.8	121	76.0
124	399	81.0	4.8	3.9	3.4	320	80.9	79	81.0
125	115	64.3	13.6	8.8	1.7	77	59.7	38	73.7
126	111	64.9	13.7	8.9	2.6	87	65.5	24	62.5
127	311	78.5	5.8	4.6	2.2	245	78.0	66	80.3
128	125	76.8	9.6	7.4	2.3	93	78.5	32	71.9
129	351	79.8	5.3	4.2	3.0	274	78.8	77	83.1
130	202	70.3	9.0	6.3	0.5	164	70.1	38	71.1
131	553	81.4	4.0	3.2	6.7	452	82.1	101	78.2
132	429	75.8	5.4	4.1	3.4	342	76.3	87	73.6
133	376	76.3	5.6	4.3	1.3	288	75.7	88	78.4
134	499	83.4	3.9	3.3	2.7	393	82.4	106	86.8
135	80	57.5	18.8	10.8	1.2	62	54.8	18	66.7
136	146	71.2	10.3	7.3	1.4	118	69.5	28	78.6
137	132	77.3	9.2	7.1	1.5	115	76.5	17	82.4
138	126	71.4	11.0	7.9	0.8	100	72.0	26	69.2
139	597	87.9	3.0	2.6	0.5	506	87.7	91	89.0
140	449	86.2	3.7	3.2	1.1	358	85.5	91	89.0
141	722	85.0	3.1	2.6	0.3	602	85.2	120	84.2
142	475	87.2	3.5	3.0	2.1	387	87.9	88	84.1
143	1208	93.4	1.5	1.4	0.1	759	92.9	449	94.2
144	726	89.5	2.5	2.2	0.8	529	90.0	197	88.3
145	732	91.0	2.3	2.1	0.3	628	90.0	104	97.1
146	602	93.7	2.1	1.9	2.7	459	93.7	143	93.7
147	132	88.6	6.1	5.4	5.0	105	88.6	27	88.9
148	37	78.4	16.9	13.3	2.6	26	76.9	11	81.8
149	450	82.2	4.3	3.5	0.7	358	81.6	92	84.8

Appendix E.

Summary of Data (with sample weights)

		,, ,				Site	County- RC	County	Category
Site ID	County- RC	County	Category	Site Type	Date Observed	Sample Weight	Sample Weight	Sample Weight	Sample Weight
1	9-2	Bourbon	2	Original	6/3/2015	0.67	0.20	0.21	0.40
2	9-2	Bourbon	2	Original	6/3/2015	0.67	0.20	0.21	0.40
3	9-2	Bourbon	2	Original	7/1/2015	0.67	0.20	0.21	0.40
4	9-2	Bourbon	2	Original	7/14/2015	0.67	0.20	0.21	0.40
5	9-3	Bourbon	2	Original	6/6/2015	0.67	0.23	0.21	0.40
6	9-3	Bourbon	2	Original	6/6/2015	0.67	0.23	0.21	0.40
7	15-2	Bullitt	2	Original	6/30/2015	0.67	0.46	0.54	0.40
8	15-2	Bullitt	2	Original	6/30/2015	0.67	0.46	0.54	0.40
9	15-2	Bullitt	2	Original	7/17/2015	0.67	0.46	0.54	0.40
10	15-1	Bullitt	2	Original	6/18/2015	0.67	0.58	0.54	0.40
11	15-1	Bullitt	2	Original	6/30/2015	0.67	0.58	0.54	0.40
12	15-1	Bullitt	2	Original	7/15/2015	0.67	0.58	0.54	0.40
13	15-1	Bullitt	2	Original	6/18/2015	0.67	0.58	0.54	0.40
14	15-1	Bullitt	2	Original	6/30/2015	0.67	0.58	0.54	0.40
15	15-3	Bullitt	2	Original	6/18/2015	0.67	0.59	0.54	0.40
16	15-3	Bullitt	2	Original	6/30/2015	0.67	0.59	0.54	0.40
17	26-2	Clay	2	Original	6/15/2015	0.67	0.20	0.20	0.40
18	26-2	Clay	2	Original	6/25/2015	0.67	0.20	0.20	0.40
19	26-2	Clay	2	Original	6/15/2015	0.67	0.20	0.20	0.40
20	26-3	Clay	2	Original	6/25/2015	0.67	0.21	0.20	0.40
21	26-3	Clay	2	Original	6/11/2015	0.67	0.21	0.20	0.40
22	26-3	Clay	2	Original	6/11/2015	0.67	0.21	0.20	0.40
23	34-2	Fayette	1	Original	7/9/2015	0.67	1.05	1.04	1.44
24	34-2	Fayette	1	Original	6/1/2015	0.67	1.05	1.04	1.44
25	34-2	Fayette	1	Original	6/16/2015	0.67	1.05	1.04	1.44
26	34-2	Fayette	1	Original	7/13/2015	0.67	1.05	1.04	1.44
27	34-2	Fayette	1	Original	7/13/2015	0.67	1.05	1.04	1.44
28	34-2	Fayette	1	Original	6/1/2015	0.67	1.05	1.04	1.44
29	34-2	Fayette	1	Original	6/16/2015	0.67	1.05	1.04	1.44
30	34-1	Fayette	1	Original	6/16/2015	0.67	0.99	1.04	1.44
31	34-1	Fayette	1	Original	7/1/2015	0.67	0.99	1.04	1.44
32	34-1	Fayette	1	Original	7/1/2015	0.67	0.99	1.04	1.44
33	34-1	Fayette	1	Original	6/5/2015	0.67	0.99	1.04	1.44
34	34-1	Fayette	1	Original	7/6/2015	0.67	0.99	1.04	1.44
35	34-1	Fayette	1	Original	6/5/2015	0.67	0.99	1.04	1.44
36	34-3	Fayette	1	Original	6/1/2015	0.67	1.11	1.04	1.44
37	34-3	Fayette	1	Original	7/1/2015	0.67	1.11	1.04	1.44
38	34-3	Fayette	1	Original	7/1/2015	0.67	1.11	1.04	1.44
39	45-2	Greenup	2	Original	6/17/2015	0.67	0.25	0.25	0.40

Site	County-			inple noight	Date	Site Sample	County- RC Sample	County Sample	Category Sample
ID	RC	County	Category	Site Type	Observed	Weight	Weight	Weight	Weight
40	45-2	Greenup	2	Original	6/17/2015	0.67	0.25	0.25	0.40
41	45-2	Greenup	2	Original	7/20/2015	0.67	0.25	0.25	0.40
42	45-2	Greenup	2	Original	6/17/2015	0.67	0.25	0.25	0.40
43	45-2	Greenup	2	Original	6/17/2015	0.67	0.25	0.25	0.40
44	45-3	Greenup	2	Original	6/10/2015	0.67	0.26	0.25	0.40
45	45-3	Greenup	2	Original	6/10/2015	0.67	0.26	0.25	0.40
46	45-3	Greenup	2	Original	7/20/2015	0.67	0.26	0.25	0.40
47	49-2	Harrison	2	Original	6/4/2015	0.67	0.14	0.15	0.40
48	49-2	Harrison	2	Original	7/14/2015	0.67	0.14	0.15	0.40
49	49-2	Harrison	2	Original	6/1/2015	0.67	0.14	0.15	0.40
50	49-3	Harrison	2	Original	7/14/2015	0.67	0.15	0.15	0.40
51	49-3	Harrison	2	Original	7/14/2015	0.67	0.15	0.15	0.40
52	49-3	Harrison	2	Original	6/13/2015	0.67	0.15	0.15	0.40
53	50-2	Hart	2	Original	7/13/2015	0.67	0.09	0.31	0.40
54	50-1	Hart	2	Original	6/2/2015	0.67	0.32	0.31	0.40
55	50-1	Hart	2	Alternate	6/5/2015	0.67	0.32	0.31	0.40
56	50-1	Hart	2	Original	6/2/2015	0.67	0.32	0.31	0.40
57	50-1	Hart	2	Original	6/2/2015	0.67	0.32	0.31	0.40
58	50-1	Hart	2	Alternate	7/13/2015	0.67	0.32	0.31	0.40
59	50-3	Hart	2	Original	6/11/2015	0.67	0.38	0.31	0.40
60	50-3	Hart	2	Original	6/5/2015	0.67	0.38	0.31	0.40
61	51-2	Henderson	2	Original	6/12/2015	0.67	0.28	0.31	0.40
62	51-2	Henderson	2	Original	6/29/2015	0.67	0.28	0.31	0.40
63	51-2	Henderson	2	Original	6/12/2015	0.67	0.28	0.31	0.40
64	51-2	Henderson	2	Original	6/12/2015	0.67	0.28	0.31	0.40
65	51-2	Henderson	2	Original	6/12/2015	0.67	0.28	0.31	0.40
66	51-2	Henderson	2	Original	6/29/2015	0.67	0.28	0.31	0.40
67	51-2	Henderson	2	Original	6/29/2015	0.67	0.28	0.31	0.40
68	51-1	Henderson	2	Original	6/22/2015	0.67	0.24	0.31	0.40
69	51-3	Henderson	2	Original	6/22/2015	0.67	0.41	0.31	0.40
70	51-3	Henderson	2	Original	6/29/2015	0.67	0.41	0.31	0.40
71	56-2	Jefferson	1	Original	7/9/2015	0.67	1.73	1.73	1.44
72	56-2	Jefferson	1	Original	6/24/2015	0.67	1.73	1.73	1.44
73	56-2	Jefferson	1	Original	6/24/2015	0.67	1.73	1.73	1.44
74	56-2	Jefferson	1	Original	6/5/2015	0.67	1.73	1.73	1.44
75	56-2	Jefferson	1	Original	6/27/2015	0.67	1.73	1.73	1.44
76	56-2	Jefferson	1	Original	6/24/2015	0.67	1.73	1.73	1.44
77	56-2	Jefferson	1	Original	6/2/2015	0.67	1.73	1.73	1.44

					jiitoj	Sito	County-	County	Catagory
Site ID	County- RC	County	Category	Site Type	Date Observed	Sample Weight	Sample Weight	Sample Weight	Sample Weight
78	56-2	Jefferson	1	Original	6/29/2015	0.67	1.73	1.73	1.44
79	56-2	Jefferson	1	Original	6/2/2015	0.67	1.73	1.73	1.44
80	56-1	Jefferson	1	Original	6/24/2015	0.67	1.81	1.73	1.44
81	56-1	Jefferson	1	Original	6/24/2015	0.67	1.81	1.73	1.44
82	56-1	Jefferson	1	Original	6/27/2015	0.67	1.81	1.73	1.44
83	56-1	Jefferson	1	Original	6/27/2015	0.67	1.81	1.73	1.44
84	56-1	Jefferson	1	Original	7/7/2015	0.67	1.81	1.73	1.44
85	56-1	Jefferson	1	Original	6/19/2015	0.67	1.81	1.73	1.44
86	56-1	Jefferson	1	Original	6/2/2015	0.67	1.81	1.73	1.44
87	56-1	Jefferson	1	Original	6/2/2015	0.67	1.81	1.73	1.44
88	56-1	Jefferson	1	Original	6/19/2015	0.67	1.81	1.73	1.44
89	56-1	Jefferson	1	Original	6/5/2015	0.67	1.81	1.73	1.44
90	56-1	Jefferson	1	Original	7/7/2015	0.67	1.81	1.73	1.44
91	56-3	Jefferson	1	Original	7/9/2015	0.67	1.31	1.73	1.44
92	56-3	Jefferson	1	Original	6/17/2015	0.67	1.31	1.73	1.44
93	59-2	Kenton	2	Original	6/25/2015	0.67	0.68	0.71	0.40
94	59-2	Kenton	2	Original	6/3/2015	0.67	0.68	0.71	0.40
95	59-2	Kenton	2	Original	6/19/2015	0.67	0.68	0.71	0.40
96	59-1	Kenton	2	Original	6/25/2015	0.67	0.69	0.71	0.40
97	59-1	Kenton	2	Original	6/25/2015	0.67	0.69	0.71	0.40
98	59-1	Kenton	2	Original	6/3/2015	0.67	0.69	0.71	0.40
99	59-1	Kenton	2	Original	6/25/2015	0.67	0.69	0.71	0.40
100	59-1	Kenton	2	Original	6/19/2015	0.67	0.69	0.71	0.40
101	59-1	Kenton	2	Original	6/19/2015	0.67	0.69	0.71	0.40
102	59-1	Kenton	2	Original	6/19/2015	0.67	0.69	0.71	0.40
103	59-3	Kenton	2	Original	6/3/2015	0.67	0.82	0.71	0.40
104	59-3	Kenton	2	Original	6/3/2015	0.67	0.82	0.71	0.40
105	69-2	Lincoln	2	Original	7/6/2015	0.67	0.22	0.24	0.40
106	69-2	Lincoln	2	Original	6/8/2015	0.67	0.22	0.24	0.40
107	69-2	Lincoln	2	Original	6/17/2015	0.67	0.22	0.24	0.40
108	69-2	Lincoln	2	Original	6/8/2015	0.67	0.22	0.24	0.40
109	69-3	Lincoln	2	Original	6/22/2015	0.67	0.28	0.24	0.40
110	69-3	Lincoln	2	Original	6/8/2015	0.67	0.28	0.24	0.40
111	73-2	McCracken	2	Original	7/2/2015	0.67	0.50	0.46	0.40
112	73-2	McCracken	2	Original	6/23/2015	0.67	0.50	0.46	0.40
113	73-2	McCracken	2	Original	6/11/2015	0.67	0.50	0.46	0.40
114	73-2	McCracken	2	Original	6/11/2015	0.67	0.50	0.46	0.40
115	73-1	McCracken	2	Original	6/11/2015	0.67	0.44	0.46	0.40
116	73-1	McCracken	2	Original	6/11/2015	0.67	0.44	0.46	0.40

					3	Site	County- BC	County	Category
Site ID	County- RC	County	Category	Site Type	Date Observed	Sample Weight	Sample Weight	Sample Weight	Sample Weight
117	73-1	McCracken	2	Original	7/2/2015	0.67	0.44	0.46	0.40
118	73-3	McCracken	2	Original	6/2/2015	0.67	0.43	0.46	0.40
119	73-3	McCracken	2	Original	7/9/2015	0.67	0.43	0.46	0.40
120	73-3	McCracken	2	Original	7/7/2015	0.67	0.43	0.46	0.40
121	97-2	Perry	2	Original	7/16/2015	0.67	0.25	0.25	0.40
122	97-2	Perry	2	Original	7/16/2015	0.67	0.25	0.25	0.40
123	97-2	Perry	2	Original	6/10/2015	0.67	0.25	0.25	0.40
124	97-2	Perry	2	Original	6/10/2015	0.67	0.25	0.25	0.40
125	97-3	Perry	2	Original	7/16/2015	0.67	0.25	0.25	0.40
126	97-3	Perry	2	Original	6/4/2015	0.67	0.25	0.25	0.40
127	97-3	Perry	2	Original	7/16/2015	0.67	0.25	0.25	0.40
128	97-3	Perry	2	Original	6/13/2015	0.67	0.25	0.25	0.40
129	98-2	Pike	2	Original	6/4/2015	0.67	0.44	0.45	0.40
130	98-2	Pike	2	Original	6/25/2015	0.67	0.44	0.45	0.40
131	98-2	Pike	2	Original	6/15/2015	0.67	0.44	0.45	0.40
132	98-2	Pike	2	Original	6/4/2015	0.67	0.44	0.45	0.40
133	98-2	Pike	2	Original	6/4/2015	0.67	0.44	0.45	0.40
134	98-2	Pike	2	Original	6/4/2015	0.67	0.44	0.45	0.40
135	98-3	Pike	2	Original	6/23/2015	0.67	0.46	0.45	0.40
136	98-3	Pike	2	Original	6/23/2015	0.67	0.46	0.45	0.40
137	98-3	Pike	2	Original	6/25/2015	0.67	0.46	0.45	0.40
138	98-3	Pike	2	Original	6/23/2015	0.67	0.46	0.45	0.40
139	114-2	Warren	2	Original	6/23/2015	0.67	0.67	0.65	0.40
140	114-2	Warren	2	Original	6/23/2015	0.67	0.67	0.65	0.40
141	114-2	Warren	2	Original	6/23/2015	0.67	0.67	0.65	0.40
142	114-2	Warren	2	Original	6/16/2015	0.67	0.67	0.65	0.40
143	114-1	Warren	2	Original	6/15/2015	0.67	0.63	0.65	0.40
144	114-1	Warren	2	Original	6/23/2015	0.67	0.63	0.65	0.40
145	114-1	Warren	2	Original	6/9/2015	0.67	0.63	0.65	0.40
146	114-1	Warren	2	Original	6/16/2015	0.67	0.63	0.65	0.40
147	114-1	Warren	2	Original	6/16/2015	0.67	0.63	0.65	0.40
148	114-3	Warren	2	Original	6/16/2015	0.67	0.67	0.65	0.40
149	114-3	Warren	2	Original	6/15/2015	0.67	0.67	0.65	0.40
150	114-3	Warren	2	Original	7/13/2015	0.67	0.67	0.65	0.40

Appendix F.

Mini-Survey Data

Site	County	VMT%	Intersection Description	Town	2009	2010	2011	2012	2013	2014	2015
ß	Barren	3.46	I-65 at Exit 53	Cave City	88	87	89	91	91	89	91
1	Meade	6.00	US 31W at KY 1638	Muldraugh	85	83	82	85	88	88	89
27	Grayson	6.95	KY 259 at US 62	Leitchfield	79	77	81	81	84	85	85
37	Logan	3.07	US 68 at US 79	Russellville	79	78	81	62	84	83	82
44	Hopkins	2.13	Pennyrile Parkway at Exit 44	Madisonville	86	83	87	87	87	91	91
54	Henderson	3.52	Us 41A at 5th St.	Henderson	78	75	83	84	85	85	88
63	Calloway	3.35	KY 1637 at 16th	Murray	75	76	79	82	82	85	87
76	Shelby	8.31	I-64 at Exit 28	Simpsonville	85	87	86	89	88	93	95
80	Woodford	1.92	US 60 at US 62	Versailles	84	86	89	84	94	93	89
88	Oldham	4.01	KY 146 at KY 329B	La Grange	84	86	89	89	88	06	92
98	Franklin	1.41	KY 2820 at US 127	Frankfort	74	74	75	80	87	87	79
110	Kenton	17.65	I-75 at Exit 186	Crescent Springs	87	87	88	88	91	92	92
121	Jefferson	8.71	US 31W at KY 841	Louisville	77	74	79	78	85	87	87
144	Boone	7.65	US 42 at US 25	Walton	77	83	84	87	86	87	88
154	Boyd	2.48	I-64 at Exit 185	Ashland	81	81	85	86	84	06	91
166	Lincoln	6.56	US 27 at US 150	Stanford	74	76	77	80	86	86	82
174	Carter	5.94	US 60 at KY 7	Grayson	72	67	72	78	80	81	81
180	Floyd	3.13	KY 680 at KY 122	Drift	57	57	60	60	20	71	68
188	Rowan	0.41	I-64 at Exit 137	Morehead	85	83	84	86	84	89	89
194	Laurel	1.89	US 25E at US 25	Corbin	74	77	79	79	79	81	85
200	Pulaski	1.45	KY 80 at KY 2296	Somerset	75	74	76	84	79	81	85
					6.67	79.8	82.2	83 4	85.8	87.4	87.6
					>->-).).	112		>.>>>	5	>>

APPENDIX F. Mini-Survey Data